Abrupt Climate Change # on Titan Jeff Portwood B.S. Geophysics and Space Physics, UCLA CSI Intern ## Outline - * Brief survey of Titan - * Motivation - * Model - * Radiation Scheme - * Effects of Methane on Equilibrium Temperature - * Future adjustments of Model ### Titan - * Saturn's largest moon - * Thick atmosphere - * 95.1% N₂ - * 4.9% CH₄ - * Hydrocarbon lakes near poles - * Fluvial erosion features across the surface - * Methane rain - * "Wet" versus "dry" climate #### Motivation - * Mitchell [2008] showed a possibility of multiple climate equilibria following abrupt climate change on Titan - * I will further explore the effect that various levels of methane concentrations have on the dynamics of the atmosphere using a simpler one-dimensional mode - Model Hierarchy: step up for realism, step down for understanding Mitchell [2008] #### Model - * One-dimensional radiative-convective model - Useful for modeling planetary heat budget - * Lacks horizontal heat transport and latitudinal redistribution of methane - * Highlights the importance of the thermodynamics of methane evaporation and condensation #### Dry Convection vs. Moist Convection Temperature [K] # Abrupt Climate Transition Addition/Removal of surface methane produces a transition in surface equilibrium temperature # Wet and Dry Temperature Profiles Ts (dry) ~ 93 K Ts (wet) ~ 91 K # Future goals - * Many parameters to be looked at in more detail - * Diffusion - * Boundary Layer - * Huygens fluxes - * McKay et al. 1991 in good agreement with Huygen's landing site - * Increasing the speed of the model - * Each run takes ~7 hours - * Build simplified two-dimensional model - * Allow for horizontal heat transport